A sparse sampling strategy for angular superresolution of real beam scanning radar
نویسندگان
چکیده
This paper investigates techniques for angular superresolution using limited data of real beam scanning radar (RBSR). In order to improve the angular resolution of RBSR, many algorithms have been proposed. However, for most algorithms, large amounts of sampling data is necessary. The requirement of data increases the burden of the radar system. Fortunately, the sparse signal reconstruction techniques provide a new train of thought for us. It has been proved in array signal processing and image processing that the techniques only need limited sampling data to realize DOA estimation and image superresolution. This paper describes the sparse sampling model of RBSR as an underdetermined equation-solving problem, the received signals are sparsely recovered in target domain. Two algorithms, including smooth approximation algorithm and focal underdetermined system solver (FOCUSS), based on different optimization ideas, are adopted to solve the problem. Simulation results show that compressive sampling methods can recover the target domain accurately, especially under the condition of high signal-to-noise ratio (SNR).
منابع مشابه
Bayesian Angular Superresolution Algorithm for Real-Aperture Imaging in Forward-Looking Radar
Abstract: In real aperture imaging, the limited azimuth angular resolution seriously restricts the applications of this imaging system. This report presents a maximum a posteriori (MAP) approach based on the Bayesian framework for high angular resolution of real aperture radar. First, Rayleigh statistic and the lq norm (for 0 < q ≤ 1) sparse constraint are considered to express the clutter prop...
متن کاملSparse Source Location for Real Aperture Radar Using Generalized SPICE Approach
Source location for real aperture radar (RAR) has raised many concerns in the fields of ground-based monitoring for aircrafts and vessels. However, the resolution of RAR in azimuth is constrained by the antenna beam width, which results in low degree of location accuracy. In this paper, a superresolution methodology to locate sources is proposed by exploiting the inherent sparseness of the targ...
متن کاملA Sparse Bayesian Approach for Forward-Looking Superresolution Radar Imaging
This paper presents a sparse superresolution approach for high cross-range resolution imaging of forward-looking scanning radar based on the Bayesian criterion. First, a novel forward-looking signal model is established as the product of the measurement matrix and the cross-range target distribution, which is more accurate than the conventional convolution model. Then, based on the Bayesian cri...
متن کاملAn Iterative Shrinkage Deconvolution for Angular Super-Resolution Imaging in Forward-Looking Scanning Radar
The aim of angular super-resolution is to surpass the real-beam resolution. In this paper, a method for forward-looking scanning radar angular super-resolution imaging through a deconvolution method is proposed, which incorporates the prior information of the target’s scattering characteristics. We first mathematically formulate the angular super-resolution problem of forward-looking scanning r...
متن کاملA Soft-Input Soft-Output Target Detection Algorithm for Passive Radar
Abstract: This paper proposes a novel scheme for multi-static passive radar processing, based on soft-input soft-output processing and Bayesian sparse estimation. In this scheme, each receiver estimates the probability of target presence based on its received signal and the prior information received from a central processor. The resulting posterior target probabilities are transmitted to the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014